inline-defaultCreated with Sketch.

This website uses cookies to ensure you get the best experience on our website.

Students
Tuition Fee
USD 19,080
Per year
Start Date
Medium of studying
On campus
Duration
48 months
Program Facts
Program Details
Degree
Bachelors
Major
Automotive Engineering | Mechanical Engineering | Vehicle Mechanics
Area of study
Engineering
Education type
On campus
Timing
Full time
Course Language
English
Tuition Fee
Average International Tuition Fee
USD 19,080
Intakes
Program start dateApplication deadline
2023-09-19-
About Program

Program Overview


Speed and sustainability

Employers’ demand for engineering graduates is growing. This unique course will give you the skills, knowledge and expertise the automotive industry is looking for. You can expect innovative project-based learning that’s supported by industry-leading hardware and software. The focus is on sustainable development, future low-emission technologies and urban transportation – this is where you’ll really benefit from our central London location and links with local leading vehicle engineering companies.





Intergrated Foundation Year

The integrated foundation year is distinctive in the way students are prepared with the specific knowledge and skills required to progress onto the BEng programme at LSBU. The foundation year is designed to respond to the differing needs of students, particularly those from local areas in accordance with the policies and practice of equal opportunities.

The content is designed to help students to develop academic, study and practical skills needed at foundation level, including a combination of core engineering modules associated with the provision of study and laboratory skills, mathematics, engineering science and scientific principles and with the specialist engineering subject enabling students to progress to BSc and BEng courses offered by the Division of Engineering they wish to pursue.





Why study Advanced Vehicle Engineering at LSBU?

fast-forward

1st in the UK for Student Satisfaction for Mechanical Engineering (Complete University Guide 2023).

space-shuttle

Make use of our stand-out facilities including a world-class Advanced Vehicle Engineering laboratory, workshop and computer suite.

bolt

4th in London for Mechanical Engineering (Guardian League Table 2022).

puzzle piece

European study: spend your third year studying with our partner institution, Hochschule Bremen, in Germany.

Program Outline

This engineering degree course focuses on sustainable development, future low-emission technologies and urban transportation. You can expect to adapt theoretical principles to solve real-world engineering problems very early on in your university career. After all, that’s what engineering is all about.

At the start you'll study modules largely common with the IMechE accredited BEng Mechanical Engineering. This is so you gain a fundamental understanding of Vehicle Engineering core subjects. Over the second and third years we’ll get more specific and you’ll take an active role in our IMechE Formula Student Team, LSBU’s Shell ECO challenge vehicle, and other group and individual projects specific to Vehicle Engineering.

Methods of assessment for this course overall: 60% coursework.

Foundation Year

Semester 1

  • Applied Mathematics

    This module provides you with the mathematical knowledge and skills to support study of BEng programmes. The module covers basic algebra, liner and simultaneous equations, quadratic equations, and graphical methods

  • Scientific Principles for Engineering

    The module will cover the principles of chemistry and physics, at a level between GCSE and A-level. It will introduce you to a range of skills required in both chemical and physical sciences, as appropriate to your intended programme of study.

  • Study & Laboratory Skills

    The module introduces study skills considering both individual and team-working skills. It will also introduce you to your own Personal Development Planning process. This module will enable you develop and use appropriate safe working practices in the workshop or laboratory environment specific to your subject/discipline

  • Semester 2

  • Mathematics for Engineering

    This module will provide you with the mathematical knowledge and skill necessary for transition to level 4 study of engineering subjects. You’ll attend lectures and tutorial where worked exercises will be undertaken. Where possible, the statistical content will introduce the use of statistical packages and the presentation of real-life data sets

  • Engineering Science

    This module is aimed at extending your science knowledge in preparation or continuing on your engineering degree. It will cover general applied physical, including fluids, electrics, dynamics, statics, heat, and energy

  • Engineering Design and Modelling

    This is an introductory module to engineering design. You’ll be taught the basic design process and apply this to a simple product. You’ll also be introduced to the workshop and simple model making tools. You’ll learn basic drawings skills.


  • Year 1

  • Engineering mathematics and modelling

    This module consolidates the mathematical skills that underpin the BEng engineering degrees. It's specifically designed to cater for the wide differences in mathematical background of 1st year students, as well as to prepare you for the Advanced Engineering Mathematics and Modelling module that you'll take in the second year. Assessment methods: 50% coursework, 50% exam.

  • Solid Mechanics and Materials

    This module will give you a broad introduction to the properties and limitations of engineering materials and an understanding of the fundamental structural characteristics governing these properties. The module will also introduce you to the fundamental concepts of engineering mechanics, particularly statics at BEng Level 4. The module will emphasise the relationship between theory and real engineering systems, and will involve a set of appropriate practical laboratory experiments. Assessment methods: 50% coursework, 50% exam.

  • Design and practice

    This module will cover material design activities, team work, creative problem-solving, project management, sustainable development principles, personal development planning, report writing communication, Computer-Aided Design (CAD), employability and transferable skills. It's also a work-based module for part-time students, utilising the Virtual Learning Environment (VLE) to provide supporting teaching material and assessments. Assessment method: 100% coursework.

  • Advanced engineering mathematics and modelling

    This module covers undergraduate advanced engineering mathematics to enable you to consider and model a variety of relevant engineering problems (e.g. electrical, mechanical, petroleum, chemical, computer, civil). Assessment methods: 50% coursework, 50% exam.

  • Engineering Design

    This module investigates vehicle engineering design using the latest CAD industry standard software and LSBU’s Virtual Engineering (VE) suite. Utilising a project-based learning approach, you'll be able to appropriately select and apply established design theory to effect comprehensive solutions to vehicle engineering problems. Assessment method: 100% coursework.

  • Solid mechanics and FEA

    This module will provide new concepts in the deformation of materials under different loading conditions and extend the application of fundamental principles of solid mechanics to more advanced systems, building on knowledge gained through Engineering and mechanical Principles. The module will provide basic concepts and the principles of the finite element analysis (FEA) techniques and the application of FEA in structural and stress analysis. Assessment methods: 30% coursework, 70% exam.

  • Vehicle dynamics and system modelling

    This module will introduce you to advanced dynamical systems theory. This involves mathematical modelling of engineering systems using both Newtonian and Lagrangian approaches. The module will provide an introduction to vehicle dynamics, tyres, and braking systems. It will embrace investigative work into vehicle dynamics systems using computer software and laboratory experiments. Assessment methods: 30% coursework, 70% exam.


  • Year 2

  • Advanced engineering mathematics and modelling

    This module covers undergraduate advanced engineering mathematics to enable you to consider and model a variety of relevant engineering problems (e.g. electrical, mechanical, petroleum, chemical, computer, civil). Assessment methods: 50% coursework, 50% exam.

  • Fluid Mechanics and Thermodynamics

    This module provides a first study of heat transfer, fluid mechanics, thermodynamics and dynamics. Assessment methods: 50% coursework, 50% exam.

  • Electrical Circuit Analysis

    This module will cover the essential material relevant to the fundamentals of both electrical and electronic engineering. Starting with basic circuit elements, Ohm’s Law and Kirchhoff’s Law, the first half of the module will introduce basic and more advanced circuit analysis techniques such as Node Voltage and Mesh Current methods, progressing onto Source Transformation techniques and the basics of semiconductors (Diodes, BJTs and Op-Amps). Then, the electrical part will cover DC responses of RC, RL and RLC circuits and finally AC sinusoidal circuit theory and power systems and three phase circuits. Assessment methods: 50% coursework, 50% exam.

  • Design and practice

    This module will cover material design activities, team work, creative problem-solving, project management, sustainable development principles, personal development planning, report writing communication, Computer-Aided Design (CAD), employability and transferable skills. It's also a work-based module for part-time students, utilising the Virtual Learning Environment (VLE) to provide supporting teaching material and assessments. Assessment method: 100% coursework.

  • Engineering Design

    This module investigates vehicle engineering design using the latest CAD industry standard software and LSBU’s Virtual Engineering (VE) suite. Utilising a project-based learning approach, you'll be able to appropriately select and apply established design theory to effect comprehensive solutions to vehicle engineering problems. Assessment method: 100% coursework.

  • Dynamics and control

    This module builds on the platform established at Level 4. The module covers dynamics and classical theory. You'll extend your treatment of dynamics from point masses rigid bodies, and cover a wider scope of applications of the principles of mechanics. You'll apply a variety of mathematical techniques to the study of dynamics and feedback problems. Additionally, you'll study various methods of classical control theory such as Bode, Nyquist and Root Locus. Assessment methods: 30% coursework, 70% exam.

  • Object Oriented Programming C++

    This is an introductory module that will address the engineering formation as well as programming knowledge and skills. It will enable you to appreciate the role and importance of software and computers in engineering, and so provide you with the impetus to quickly become competent in their use. Assessment method: 100% coursework.

  • Thermofluids and Sustainable Energy

    This module provides a second study of heat transfer, fluid mechanics and thermodynamics, exploring more theory to allow industrial level analysis of processes. The scope includes an appreciation of fuels/combustion, power-producing cycles, internal/external fluid flows and further heat transfer. Assessment methods: 50% coursework, 50% exam.

  • Machine drives and mechatronics

    This module provides the fundamental theory and calculations behind essential elements of mechanical and mechatronics design e.g. mechanical drives, transmission systems, electrical actuation systems, sensors and microcontrollers. You'll learn from the laboratory experiments about the hardware components and subsystems used in the mechanical and mechatronics control in advanced engineering applications. Assessment methods: 30% coursework, 70% exam.

  • Electric Vehicle and Power Electronics

    This module provides an advanced study on stress analysis, including elasticity theory, inelastic deformations, fracture of materials and their application to practical engineering problems. The module also introduces the core concepts of manufacturing systems and computer integrated manufacturing in the contemporary product realization process. You'll develop an understanding of the scope of materials/manufacturing technologies, the integrative role of materials selection in engineering and design and an appreciation of technological change, innovation and sustainable in manufacturing technologies. Assessment methods: 30% coursework, 70% exam.

  • Portfolio Engineering Projects
  • BEng Project

  • Year 3

  • Optional placement year

  • Year 4

  • Electric Vehicle and Power Electronics

    This module provides an advanced study on stress analysis, including elasticity theory, inelastic deformations, fracture of materials and their application to practical engineering problems. The module also introduces the core concepts of manufacturing systems and computer integrated manufacturing in the contemporary product realization process. You'll develop an understanding of the scope of materials/manufacturing technologies, the integrative role of materials selection in engineering and design and an appreciation of technological change, innovation and sustainable in manufacturing technologies. Assessment methods: 30% coursework, 70% exam.

  • Vehicle dynamics and system modelling

    This module will introduce you to advanced dynamical systems theory. This involves mathematical modelling of engineering systems using both Newtonian and Lagrangian approaches. The module will provide an introduction to vehicle dynamics, tyres, and braking systems. It will embrace investigative work into vehicle dynamics systems using computer software and laboratory experiments. Assessment methods: 30% coursework, 70% exam.

  • Vehicle powertrain, sustainability and 1D-CFD

    This module evaluates a variety of existing and future low-carbon powertrains including internal combustion engines utilising multiple fuels, electric motors powered by batteries and fuel-cells, and alternative power sources. Power transmission systems for each powertrain will be considered, as well as energy recovery systems, sustainability and infrastructure requirements for wide-scale use / adoption. Analysis of energy systems will include an appreciation of environmental impact, and you'll develop the ability to critically appraise alternative power-producing devices to meet current and future energy needs. This module will also develop the study of fluid-mechanics governing equations applied to computational fluid dynamics (CFD), and performance of various types of pumps and turbines. You'll undertake simulation of a fluid system using 1D-CFD code. Assessment methods: 30% coursework, 70% exam.

  • Innovation and enterprise

    In the rapidly changing world around us, it's imperative that you're able to think dynamically to create advantage in your life. This module encourages you to question what you see and experience around you and in your prospective engineering field with an aim to enhance your creativity to discover new and better ways of doing things. It aims to equip you with methods and processes to recognise opportunities and to plan on harnessing commercially viable benefits that may exist from exploiting those opportunities in a sustainable fashion. This might be a product or service (such as consultancy or contract management). The application of project management principles will help to define the critical path of a proposed business and how the many processes involved (planning, market research, market placement, finance, operations, human resources etc.) are interlinked throughout the initial planning exercise and how they can change over time. You'll be expected to reflect on what you can contribute towards a group. Assessment method: 100% coursework.

  • BEng individual project

    The Individual Major Project requires you to plan, execute, review and report upon a major piece of technical work directly related to your degree discipline. In this regard, this module provides you with the opportunity to develop a high degree of subject-specific expertise. This module differentiates from others on the course taken due to the high degree of autonomous study expected. This flexibility should be seen as an opportunity to explore new areas of interest and to acquire new and often unexpected skills. The work undertaken within the project will require you to develop your own methodology in advance of presenting solutions to the studied problem. It's therefore expected that project will include evidence and demonstration of detailed research of the subject matter, practical demonstration of understanding of the material, testing and evaluation of the practical elements, detailed reporting, discussion and conclusions of the entire project, and a high level of written presentation and grammar skills. Assessment method: 100% coursework.

  • Modules are assessed through formal written examinations, phase tests, formative and summative assignments. Ability to apply and integrate knowledge is assessed by larger scale project work as well as group assignments (where appropriate) and logbooks.


    Facilities

    During your course you'll have access to up-to-date and large-scale workshops, laboratories and design studios which are highly in tune with leading technologies. LSBU has made considerable investment into it's engineering facilities, and thanks to our commitment to developing work-ready graduates, you'll be developing and producing your work in an industry standard environment.

    Read more about our workshops, laboratories and industry-standard software packages.


    Facilities

    During your course you'll have access to up-to-date and large-scale workshops, laboratories and design studios which are highly in tune with leading technologies. LSBU has made considerable investment into it's engineering facilities, and thanks to our commitment to developing work-ready graduates, you'll be developing and producing your work in an industry standard environment.

    Read more about our workshops, laboratories and industry-standard software packages.

    SHOW MORE
    How can I help you today?